Workflow of a Typical Machine Learning Problem

October 15, 2025

Machine Learning Workflow Overview

600000060 0O0CO0

Import Libraries

Import Dataset

Exploratory Data Analysis (EDA)

Data Scrubbing / Preprocessing

Pre-Model Algorithms (Feature Engineering)
Split & Cross Validation

Set Algorithm (Model Selection)

Predict

Evaluate

Optimize

Step 1 — Import Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split, cross_val_scor
from sklearn.metrics import accuracy_score, classification_report

Step 2 — Import Dataset (Built-ins)

Dataset Name Code Suggested Use Case

Boston House Prices load _boston Regression (deprecated in recent
sklearn)

Iris load iris Classification

Diabetes load diabetes Regression

Digits load digits Classification

Linnerud load linnerud Multivariate regression

Wine load wine Classification

Breast Cancer load breast_cancer Classification

from sklearn.datasets import load_breast_cancer
data = load_breast_cancer ()
X, y = data.data, data.target

Step 3 — Exploratory Data Analysis (EDA)

@ Inspect shape, dtypes, missing values, outliers, correlations.

@ Visualize distributions and pairwise relationships.

df .info (); df.describe()
sns.pairplot (df, diag_kind="hist")
sns.heatmap(df.corr(numeric_only=True), annot=True, fmt=".2f")

Step 4 — Data Scrubbing / Preprocessing

@ Handle missing values, duplicates, and wrong dtypes.

@ Encode categoricals; normalize/standardize features.

df = df.drop_duplicates()
df = df.fillna (df.mean(numeric_only=True))
df = pd.get_.dummies(df, drop_first=True)

Step 5 — Pre-Model Algorithms (Feature Engineering)

@ Feature selection (filter, wrapper, embedded); PCA for dimensionality reduction.

o Create meaningful derived variables to reduce variance/overfitting.

from sklearn.decomposition import PCA
pca = PCA(n_components=2).fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)

Step 6A — Train/Test Split: Split validation
Definition:

@ Divides data into two subsets — a training set to learn from and a testing set to evaluate
model performance.

@ Common ratios: 70:30 or 80:20.
Python Example:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, shuffle=True
)

Purpose:

@ Provides a quick estimate of model performance.

@ May vary depending on how data is split.

Step 6B — Cross Validation
Definition:
@ Data is divided into k folds.

@ Model is trained on k — 1 folds and validated on the remaining one.
@ Repeated k times for more stable results.

Equation:

k
1 .
CV Score = P E Metric;
i=1
Python Example:

from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(random_state=42)
scores = cross_val_score(model, X, y, cv=5, scoring="accuracy”)
print(scores.mean(), scores.std())

Summary:

@ Split validation: single performance estimate.
o Cross-validation: averaged estimate — reduces bias & variance, good for small datasets

Step 7 — Set Algorithm (Model Selection)

Algorithm Target Data Type Method Resduxrnsparency
Linear Regression Continuous Linear, clean Supervised LovHigh
Logistic Regression Discrete Reliable patterns Supervised LowMedium
k-Means Discrete Complex Unsupervised MedHigh
Decision Trees Both Few outliers Supervised MedHigh
Gradient Boosting Both Limited outliers Ensemble Highow
Random Forests Both Messy, complex Ensemble Medionn

SVvM Both E:qr:plex, high vol- Supervised Highow

MLP Both E:qu'ex’ high vol- ¢\ o ervised Highow

Table: Overview of popular ML algorithms.

Learning Categories:
@ Supervised Learning: Learns from labeled input—output data to predict future outcomes.
@ Unsupervised Learning: Finds structure or clusters in unlabeled data.

@ Ensemble Learning: Combines multiple weak models to improve accuracy and stability.

Step 8 — Predict

model. fit (X_train, y_train)
y_pred = model. predict(X_test)

Step 9 — Evaluate (Classification Metrics)

True Label

0 1
Predicted Label

Confusion Matrix (Illustrative Example)

@ True Positive (TP): Correctly predicted positive cases (bottom-right).
@ True Negative (TN): Correctly predicted negative cases (top-left).

@ False Positive (FP): Incorrectly labeled as positive (top-right).

@ False Negative (FN): Missed positive cases (bottom-left).

Step 9 — Evaluate (Classification Metrics)

Accuracy = TP+ TN
Y T TP Y TN FP+ FN
orecision — TP
recision = TP L FP
TP
Recall (Sensitivity) = m

Precision x Recall

Precision + Recall
Support: number of true instances for each class.

F1=2x

Sklearn Snippet

from sklearn.metrics import confusion_matrix,
print(confusion_matrix(y_-test, y_pred))
print(classification_report(y_test, y_pred))

classification_report

Step 9 — Evaluate (Regression Metrics)

1< A
MAE = nz;b,,_y,\
1=

1 —)
RMSE = | = . — 9
S n;:l(y Vi)

Notes: MAE is more robust to outliers; RMSE penalizes larger errors more heavily.

Step 10 — Optimize: Hyperparameters

o Hyperparameters are external configuration values set before the learning process begins.

@ They control the model's learning behavior, capacity, and generalization (unlike internal
parameters, which are learned from data).

Algorithm Common Hyperparameters Purpose

PCA n_components Number of principal components to retain

K-Means n_clusters, init, max_iter Define cluster count, initialization, and iterations

SVM C, kernel, gamma Control regularization and decision boundary complexity

Random Forest n_estimators, max_depth, Trees count, depth, and split control
min_samples_split

Gradient Boosting learning_rate, n_estimators, Step size, number of boosting rounds, sampling ratio
subsample

Neural Network hidden_layers, learning_rate, Network size, training speed, stability
batch_size

KNN n_neighbors, metric, weights ~ Number of neighbors and distance calculation rule

Logistic Regression penalty, C, solver Regularization strength and optimization method

Goal: Find the best hyperparameter combination (e.g., via Grid Search, Random Search, or
Bayesian Optimization) to improve model performance.

Step 10 — Optimize (Hyperparameters)

from sklearn.model_selection import GridSearchCV

param_grid = {"n_estimators”: [100, 200],
"max_depth”: [4, 6, 8]}

grid = GridSearchCV(RandomForestClassifier (),
param_grid , cv=5,
scoring="accuracy”, n_jobs=-1)

grid. fit(X_train, y_train)
print(grid.best_params_, grid.best_score_)

Summary

© Prepare data: EDA & scrubbing.

@ Engineer features; select an algorithm.

© Train with proper validation (K-fold).

© Evaluate with the right metrics (classification/regression).

© Tune hyperparameters and iterate.

Linear regression

2500

0 100 200 300 400 500 600

Figure 24: The distance of the data points to the hyperplane

p
y=80+>_ Bixi.
i=1

1=

700

Logistic regression: Probability (sigmoid) form

14
0 5 10 15 20 25 30 35

P
1
=Ply=1]|xj) = + N .
p (v | xi) 0(50 iz;@X) 1+ exp(—fo — 220, Bixi)

Logistic regression: Hyperplane

Figure 26: Logistic regression hyperplane is used to split the two classes

|0g<1) ,60+Zﬁjxla

i=1

Learning linear functions of features

Given data (x;,y;) with x; € RP:
e Postulate a linear score z(x) = wy +w ' x.

e Linear regression: predict a continuous target with y = z(x).

1

o Logistic regression: predict a binary target with p = o(z(x)), o(t) = 17e=-

Hyperplane view: {x|w'x + wy = 0} is a (p—1)-dimensional hyperplane.

When to use which?

Linear Regression Logistic Regression
@ Continuous targets; approximate linear @ Binary (or multinomial) targets;
relation. probabilistic outputs.
@ Goal: predictive mean; interpretable effect @ Goal: calibrated probabilities; linear
sizes. decision boundary w'x + wy = 0.
@ Metrics: MAE/RMSE/R2; inspect @ Metrics: Precision/Recall/F1, ROC-AUC,
residuals. calibration.

Takeaway: both learn a linear function in feature space; linear predicts a value; logistic maps
the same linear score through a sigmoid to yield class probabilities and a hyperplane decision
boundary.

Linear Classifiers

e Both Logistic Regression (LR) and Support Vector Machine (SVM) are supervised
learning algorithms used for classification.

@ They find a separating hyperplane between two classes.

@ However, their objective functions differ fundamentally.

Logistic Regression: Probabilistic Model

@ Logistic regression models the probability of class membership using the sigmoid

function:
1

Ply =1 = 1 —wms

@ It minimizes the logistic loss (cross-entropy):

L= Z log(1 + e*y"(WTX‘*b))

@ Decision boundary: where P =0.5,ie. w/x+b=0.

Support Vector Machine: Geometric Model

SVM seeks the maximum-margin hyperplane separating the two classes.
Objective:

1
min §||W”2 st. yi(w'x+b) > 1

Only the support vectors (closest points) influence the boundary.

2
[wll

The margin width is

Comparison of Decision Boundaries

Margin
N B (SVM)
y 1 A A (Logistic)
o
w

*
* * *

*

Figure 27: Logistic regression versus SVM

Figure: Logistic regression (A) vs SVM (B) — SVM maximizes the margin, logistic regression fits
probability boundary.

Effect of New Data Point

New Data Point
\ B (SVM)

y \ A (Logistic)

igure 28: A new data point is added to the scatterplot

Observation: Logistic regression boundary (A) shifts more due to new data; SVM (B) is less sensitive
as it depends mainly on support vectors.

Key Differences

Aspect Logistic Regression SVM

Nature Probabilistic (predicts P(y|x)) | Geometric (margin-based)

Loss Function | Logistic / Cross-entropy Hinge loss: max(0,1 — y;(w'x; + b))
Output Probabilities Class labels only

Robustness Sensitive to outliers More robust (due to margin)
Computation | Faster, simpler Slower for large datasets

Summary

o Logistic Regression: interpretable, probabilistic, sensitive to outliers.
@ SVM: focuses on maximizing margin, effective for complex/nonlinear boundaries.

@ Both can use kernel transformations for nonlinear data.

Hyperparameters & Grid Search (SVM)

o C (regularization): trade-off between wide margin (small C) and fewer violations (large
C). Too big C = overfit; too small = underfit.

e v (RBF width): influence range of a single point. Small v = smoother boundary; large
v = wiggly boundary.

o Kernel: linear (fast, interpretable), RBF (default, flexible), poly/sigmoid (situational).
Always scale features before non-linear kernels.

e Cross-Validation (CV): reliable model selection on the training set; stabilizes choices
but may not change test accuracy.

GridSearchCV (best practice) Pipeline([(’scaler’, StandardScaler()), (’svm’, SVC())I)
param grid = { ’svm_kernel’: [’linear’,’rbf’], ’svm_C’: [0.1,1,10,100], ’svm__gamma’:
[’scale’,le-3,1e-4] }

GridSearchCV(pipe, param grid, cv=5, scoring=’accuracy’, n_jobs=-1) Reading results:

inspect best_params_, best_score_, and cv_results_ (mean =+ std across folds).

Overview

o K-Nearest Neighbors (KNN): A non-parametric, instance-based supervised learning
algorithm.

Tree-Based Methods: Include Decision Trees, Random Forests, Bagging, and Boosting.

All are supervised learning algorithms, capable of handling both classification and
regression tasks.

@ Focus: interpretability, flexibility, and adaptability to nonlinear data.

K-Nearest Neighbors (KNN): Concept

o Classifies a new point based on the majority

label of its k-nearest neighbors. New Data Point
. . . \ Class Aw
° D|§tance rlnetrlcs: Euclidean, Manhattan, or . x Class B ®
Minkowski. y * *!
e Small k: Overfitting, sensitive to noise. o ‘\\ A\ L
Large k: Oversmoothing, underfitting. T * ‘.. ..
@ Lazy learner — no model training, computes k=3 o
during prediction. k=7 b
@ Works only with numerical or N

X
distance-computable features.

Figure 29: An example of k-NN clustering used to predict the class of a new data poi

Tree-Based Methods: Overview

Decision Trees, Random Forests, Bagging, Gradient Boosting
Used for both classification and regression.

Handle categorical and numerical data.

e 6 o o

Advantages:
o Highly interpretable (tree-graph structure).
o Nonlinear decision boundaries.
e Can work without feature scaling.

Disadvantages:

o High variance (overfitting) if tree depth is not controlled.
e Sensitive to small perturbations in data.

Decision Tree: Concept

Work to do? ‘ Internal

@ Builds a model in a tree-like structure of node
.. Yes No
decisions and outcomes.
@ Splits data recursively using variables that best T | Outool_| ——
reduce Gini impurity or entropy. — .
. . Over-
@ Internal nodes: decision based on a feature. g
Branches: outcome of test. Gotobeach | [Goruming | | Friends busy? |
Leaves: predicted label/value. Lo Yes No

node [Stay in ‘ | Go to movies

@ Works well for small-to-medium datasets.

Decision Tree for what to do today. https://towardsdatascience.com

Tree Ensembles: Bagging, Random Forest, Boosting

e Bagging: Builds multiple trees on bootstrap samples and averages predictions (reduces
variance).

e Random Forest: Bagging + random feature selection at each split (decorrelates trees).
e Boosting: Sequentially builds trees, each correcting errors of the previous (reduces bias).

o Gradient Boosting: Uses gradient descent to minimize loss function across weak
learners.

Supervised Learning Context:
@ All tree-based models are supervised.

@ Input: labeled data (X, y).
Output: predictive model.

e For unlabeled data, clustering or dimensionality reduction (unsupervised) methods are
used instead.

Comparison: KNN vs Tree-Based Methods

Aspect

KNN

Tree-Based Methods

Learning type

Supervised (instance-based)

Supervised (model-based)

Training time

None (lazy learner)

Requires training (tree construction)

Prediction time

Expensive (distance calc.)

Fast after training

Interpretability

Low

High (visual trees)

Feature scaling Required Not required
Data type Numeric only Numeric + Categorical
Overfitting control | via k via pruning / ensembles

Summary

@ KNN: intuitive, simple, but computationally heavy on large datasets.

@ Decision Trees: interpretable but unstable.

e Random Forest / Bagging: reduce variance.

@ Boosting / Gradient Boosting: reduce bias.

@ Ensemble learning combines multiple weak learners to achieve robust models.
o Decision Tree: one interpretable single-tree model, high variance.

@ Random Forest: multiple trees trained in parallel; reduces variance.

o Gradient Boosting: sequential small trees ((sequential correction); reduces bias by
correcting errors.

Decision Tree/ Random Forest Classifier Parameters

Parameter

Description

Typical Impact

max_depth=10

Limits how deep the tree can grow (how
many levels of decisions).

Prevents overfitting. Larger depth — more
complex model; smaller depth — simpler
model.

criterion=‘gini’

Metric to measure the quality of a split.
Options: ‘gini’ or ‘entropy’.

‘gini’ uses Gini impurity (faster), while
‘entropy’ uses information gain (Shannon
entropy).

random_state=42

Sets the seed for random processes (like
choosing feature splits).

Ensures reproducibility — same random seed
= same model each time you run.

n_jobs= -1 (only
for random forest)

Number of CPU cores to use for parallel
processing.

—1 uses all cores = faster training; use
smaller values to limit CPU usage

Gradient Boosting Parameters

Parameter

Description

Typical Impact / Guidance

n_estimators=250

Number of boosting stages (trees).

More estimators — lower bias but higher
training time and possible overfitting.
Common range: 100-500.

learning rate=0.1

Shrinkage rate applied to each tree's
contribution.

Lower rate requires more estimators; bal-
ances model complexity vs. accuracy.
Typical: 0.01-0.2.

max_depth=10

Maximum depth of individual regression
trees.

Deeper trees learn more complex relations
but risk overfitting; shallower trees in-
crease bias.

min_samples_split=4

Minimum number of samples required to
split an internal node.

Higher values — simpler, more generalized
trees.

min_samples_leaf=6

Minimum number of samples at a leaf
node.

Prevents very small leaves; helps regular-
ization and reduces overfitting.

max_features=0.6

Fraction of features considered for each
split.

Adds randomness, improves generaliza-
tion, speeds up training. Typical: 0.3-1.0.

loss=’log-loss’

Loss function optimized during boosting.

’log_loss’ = logistic regression loss for
classification; lower loss = better fit. Also,
’exponential’

‘squared_error’ ‘absolute_error’ ‘huber’ — a mix between squared and absolute loss (less sensitive to outliers),

Loss functions in GradientBoostingRegressor:

‘quantile’

BaggingClassifier Parameters

Parameter

Default Value

Description

estimator

None

Base estimator to fit on random subsets. Defaults to a decision
tree (DecisionTreeClassifier()) if None.

n_estimators 10 Number of base estimators (bagged models) in the ensemble.

max_samples 1.0 Fraction or number of samples to draw from the training set
to train each base estimator. (1.0 = 100% of the data, with
replacement).

max_features 1.0 Fraction or number of features to draw for training each base
estimator. (1.0 = all features).

bootstrap True Whether samples are drawn with replacement (bootstrap sam-
pling).

bootstrap_features False Whether features are drawn with replacement.

oob_score False If True, compute the out-of-bag score using data not seen by
each base estimator.

warm_start False If True, reuse the solution of previous calls to .fit() and add
more estimators incrementally.

n_jobs None Number of CPU cores to use for parallel training. None = 1 core;
-1 = all cores.

random_state None Seed for reproducibility.

verbose 0 Controls the verbosity level during fitting.

Comparison of Tree-based Ensemble Methods

Model

Training Strategy

Bias—Variance
Tradeoff

Typical Features /
Remarks

Decision Tree

Core Idea

Single tree parti-
tions data using
impurity measures

(Gini / entropy).

Trained once on all
data; greedy top-
down splitting.

Low bias, high vari-
ance.

Easy to interpret;
prone to overfitting.

Bagging

Train multiple mod-
els on bootstrapped
samples and average
results.

Parallel, indepen-
dent models (each
on random sample).

Reduces variance;
bias unchanged.

Stabilizes high-
variance models like
trees. Example:
Random Forest.

Random Forest

Bagging + random

Parallel ensemble of

Lower variance than

Adds feature ran-

cusing on previous
errors.

(misclassified points
emphasized).

feature selection at | many decision trees. | single tree. domness; robust,

each split. less interpretable.
Boosting Sequentially add | Each model trained | Reduces bias; may | AdaBoost is classic

weak learners fo- | on weighted data | increase variance. version; uses expo-

nential loss.

Gradient Boosting

Boosting via gradi-
ent descent on a loss
function.

Sequential models
fit to residuals (neg-
ative gradients).

Reduces both bias
and error progres-
sively.

More flexible;
supports various
losses (log-loss,

squared_error);
forms basis of XG-
Boost, LightGBM.

Evolution of Methods (Simple Flow)

|Decision Tree| = |Bagging| = |[Random Forest| =

= |Gradient Boosting

Decision Tree: single model; high variance.

Bagging: variance reduction via bootstrap + averaging.

Random Forest: bagging + random features (decorrelates trees).
Boosting: sequential weak learners correct errors (bias |).

Gradient Boosting: boosting via gradient descent on a loss.

Boosting

Base Estimator — Ensemble Classifier (Simple Flow)

Base Estimator
(e.g., DecisionTreeClassifier (max_depth=1))

U U --- (many copies / rounds)

| Combine Predictions|

(vote / average / weighted sum)

4

Ensemble Classifier
(e.g.,AdaBoostClassifler, aggingClassifier, andomForestClassifier)

Idea: The ensemble trains many simple models and combines them into one strong predictor.

