
Workflow of a Typical Machine Learning Problem

October 15, 2025

Machine Learning Workflow Overview

1 Import Libraries

2 Import Dataset

3 Exploratory Data Analysis (EDA)

4 Data Scrubbing / Preprocessing

5 Pre-Model Algorithms (Feature Engineering)

6 Split & Cross Validation

7 Set Algorithm (Model Selection)

8 Predict

9 Evaluate

10 Optimize

Step 1 – Import Libraries

import numpy as np
import pandas as pd
import m a t p l o t l i b . p y p l o t as p l t
import s e a b o r n as s n s
from s k l e a r n . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t , c r o s s v a l s c o r e
from s k l e a r n . m e t r i c s import a c c u r a c y s c o r e , c l a s s i f i c a t i o n r e p o r t

Step 2 – Import Dataset (Built-ins)

Dataset Name Code Suggested Use Case

Boston House Prices load boston
Regression (deprecated in recent
sklearn)

Iris load iris Classification
Diabetes load diabetes Regression
Digits load digits Classification
Linnerud load linnerud Multivariate regression
Wine load wine Classification
Breast Cancer load breast cancer Classification

from s k l e a r n . d a t a s e t s import l o a d b r e a s t c a n c e r
data = l o a d b r e a s t c a n c e r ()
X, y = data . data , data . t a r g e t

Step 3 – Exploratory Data Analysis (EDA)

Inspect shape, dtypes, missing values, outliers, correlations.

Visualize distributions and pairwise relationships.

d f . i n f o () ; d f . d e s c r i b e ()
s n s . p a i r p l o t (df , d i a g k i n d=” h i s t ”)
s n s . heatmap (d f . c o r r (n u m e r i c o n l y=True) , annot=True , fmt=” . 2 f ”)

Step 4 – Data Scrubbing / Preprocessing

Handle missing values, duplicates, and wrong dtypes.

Encode categoricals; normalize/standardize features.

d f = d f . d r o p d u p l i c a t e s ()
d f = d f . f i l l n a (d f . mean (n u m e r i c o n l y=True))
d f = pd . get dummies (df , d r o p f i r s t=True)

Step 5 – Pre-Model Algorithms (Feature Engineering)

Feature selection (filter, wrapper, embedded) ; PCA for dimensionality reduction.

Create meaningful derived variables to reduce variance/overfitting.

from s k l e a r n . d e c o m p o s i t i o n import PCA
pca = PCA(n components =2). f i t (X t r a i n)
X t r a i n p c a = pca . t r a n s f o r m (X t r a i n)
X t e s t p c a = pca . t r a n s f o r m (X t e s t)

Step 6A – Train/Test Split: Split validation

Definition:

Divides data into two subsets — a training set to learn from and a testing set to evaluate
model performance.

Common ratios: 70:30 or 80:20.

Python Example:

from s k l e a r n . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (
X, y , t e s t s i z e =0.2 , r a n d o m s t a t e =42, s h u f f l e=True

)

Purpose:

Provides a quick estimate of model performance.

May vary depending on how data is split.

Step 6B – Cross Validation
Definition:

Data is divided into k folds.
Model is trained on k − 1 folds and validated on the remaining one.
Repeated k times for more stable results.

Equation:

CV Score =
1

k

k∑
i=1

Metrici

Python Example:

from s k l e a r n . m o d e l s e l e c t i o n import c r o s s v a l s c o r e
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

model = R a n d o m F o r e s t C l a s s i f i e r (r a n d o m s t a t e =42)
s c o r e s = c r o s s v a l s c o r e (model , X , y , cv =5, s c o r i n g=” a c c u r a c y ”)
p r i n t (s c o r e s . mean () , s c o r e s . s t d ())

Summary:

Split validation: single performance estimate.
Cross-validation: averaged estimate → reduces bias & variance, good for small datasets

Step 7 – Set Algorithm (Model Selection)

Algorithm Target Data Type Method ResourcesTransparency

Linear Regression Continuous Linear, clean Supervised LowHigh
Logistic Regression Discrete Reliable patterns Supervised LowMedium
k-Means Discrete Complex Unsupervised MediumHigh
Decision Trees Both Few outliers Supervised MediumHigh
Gradient Boosting Both Limited outliers Ensemble HighLow
Random Forests Both Messy, complex Ensemble MediumLow

SVM Both
Complex, high vol-
ume

Supervised HighLow

MLP Both
Complex, high vol-
ume

Supervised HighLow

Table: Overview of popular ML algorithms.

Learning Categories:

Supervised Learning: Learns from labeled input–output data to predict future outcomes.

Unsupervised Learning: Finds structure or clusters in unlabeled data.

Ensemble Learning: Combines multiple weak models to improve accuracy and stability.

Step 8 – Predict

model . f i t (X t r a i n , y t r a i n)
y p r e d = model . p r e d i c t (X t e s t)

Step 9 – Evaluate (Classification Metrics)

134 12

29 125

TPFN

FPTN

Predicted Label

T
ru

e
L

a
b

el

0 1

1

0

Confusion Matrix (Illustrative Example)

True Positive (TP): Correctly predicted positive cases (bottom-right).
True Negative (TN): Correctly predicted negative cases (top-left).
False Positive (FP): Incorrectly labeled as positive (top-right).
False Negative (FN): Missed positive cases (bottom-left).

Step 9 – Evaluate (Classification Metrics)

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall (Sensitivity) =
TP

TP + FN

F1 = 2× Precision× Recall

Precision + Recall

Support: number of true instances for each class.

Sklearn Snippet

from s k l e a r n . m e t r i c s import c o n f u s i o n m a t r i x , c l a s s i f i c a t i o n r e p o r t
p r i n t (c o n f u s i o n m a t r i x (y t e s t , y p r e d))
p r i n t (c l a s s i f i c a t i o n r e p o r t (y t e s t , y p r e d))

Step 9 – Evaluate (Regression Metrics)

MAE =
1

n

n∑
i=1

|yi − ŷi |

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)
2

Notes: MAE is more robust to outliers; RMSE penalizes larger errors more heavily.

Step 10 – Optimize: Hyperparameters

Hyperparameters are external configuration values set before the learning process begins.

They control the model’s learning behavior, capacity, and generalization (unlike internal
parameters, which are learned from data).

Algorithm Common Hyperparameters Purpose

PCA n components Number of principal components to retain
K-Means n clusters, init, max iter Define cluster count, initialization, and iterations
SVM C, kernel, gamma Control regularization and decision boundary complexity
Random Forest n estimators, max depth,

min samples split
Trees count, depth, and split control

Gradient Boosting learning rate, n estimators,
subsample

Step size, number of boosting rounds, sampling ratio

Neural Network hidden layers, learning rate,
batch size

Network size, training speed, stability

KNN n neighbors, metric, weights Number of neighbors and distance calculation rule
Logistic Regression penalty, C, solver Regularization strength and optimization method

Goal: Find the best hyperparameter combination (e.g., via Grid Search, Random Search, or
Bayesian Optimization) to improve model performance.

Step 10 – Optimize (Hyperparameters)

from s k l e a r n . m o d e l s e l e c t i o n import GridSearchCV

p a r a m g r i d = {” n e s t i m a t o r s ” : [1 0 0 , 2 0 0] ,
” max depth ” : [4 , 6 , 8]}

g r i d = GridSearchCV (R a n d o m F o r e s t C l a s s i f i e r () ,
pa ram gr id , cv =5,
s c o r i n g=” a c c u r a c y ” , n j o b s =−1)

g r i d . f i t (X t r a i n , y t r a i n)
p r i n t (g r i d . b e s t p a r a m s , g r i d . b e s t s c o r e)

Summary

1 Prepare data: EDA & scrubbing.

2 Engineer features; select an algorithm.

3 Train with proper validation (K-fold).

4 Evaluate with the right metrics (classification/regression).

5 Tune hyperparameters and iterate.

Linear regression

y = β0 +

p∑
i=1

βjxi .

Logistic regression: Probability (sigmoid) form

p ≡ P(y = 1 | xi) = σ

(
β0 +

p∑
i=1

βjxi

)
=

1

1 + exp
(
−β0 −

∑p
i=1 βjxi

) .

Logistic regression: Hyperplane

log

(
p

1− p

)
= β0 +

p∑
i=1

βjxi ,

Learning linear functions of features

Given data (xi , yi) with xi ∈ Rp:

Postulate a linear score z(x) = w0 + w>x.

Linear regression: predict a continuous target with ŷ = z(x).

Logistic regression: predict a binary target with p̂ = σ
(
z(x)

)
, σ(t) = 1

1+e−t .

Hyperplane view: {x |w>x + w0 = 0} is a (p−1)-dimensional hyperplane.

When to use which?

Linear Regression

Continuous targets; approximate linear
relation.

Goal: predictive mean; interpretable effect
sizes.

Metrics: MAE/RMSE/R2; inspect
residuals.

Logistic Regression

Binary (or multinomial) targets;
probabilistic outputs.

Goal: calibrated probabilities; linear
decision boundary w>x + w0 = 0.

Metrics: Precision/Recall/F1, ROC–AUC,
calibration.

Takeaway: both learn a linear function in feature space; linear predicts a value; logistic maps
the same linear score through a sigmoid to yield class probabilities and a hyperplane decision
boundary.

Linear Classifiers

Both Logistic Regression (LR) and Support Vector Machine (SVM) are supervised
learning algorithms used for classification.

They find a separating hyperplane between two classes.

However, their objective functions differ fundamentally.

Logistic Regression: Probabilistic Model

Logistic regression models the probability of class membership using the sigmoid
function:

P(y = 1|x) =
1

1 + e−wT x−b

It minimizes the logistic loss (cross-entropy):

L =
∑
i

log(1 + e−yi (w
T xi+b))

Decision boundary: where P = 0.5, i.e. wT x + b = 0.

Support Vector Machine: Geometric Model

SVM seeks the maximum-margin hyperplane separating the two classes.

Objective:

min
w ,b

1

2
‖w‖2 s.t. yi (w

T xi + b) ≥ 1

Only the support vectors (closest points) influence the boundary.

The margin width is 2
‖w‖ .

Comparison of Decision Boundaries

Figure: Logistic regression (A) vs SVM (B) – SVM maximizes the margin, logistic regression fits
probability boundary.

Effect of New Data Point

Observation: Logistic regression boundary (A) shifts more due to new data; SVM (B) is less sensitive
as it depends mainly on support vectors.

Key Differences

Aspect Logistic Regression SVM
Nature Probabilistic (predicts P(y |x)) Geometric (margin-based)

Loss Function Logistic / Cross-entropy Hinge loss: max(0, 1− yi (w
T xi + b))

Output Probabilities Class labels only

Robustness Sensitive to outliers More robust (due to margin)

Computation Faster, simpler Slower for large datasets

Summary

Logistic Regression: interpretable, probabilistic, sensitive to outliers.

SVM: focuses on maximizing margin, effective for complex/nonlinear boundaries.

Both can use kernel transformations for nonlinear data.

Hyperparameters & Grid Search (SVM)

C (regularization): trade-off between wide margin (small C) and fewer violations (large
C). Too big C ⇒ overfit; too small ⇒ underfit.

γ (RBF width): influence range of a single point. Small γ ⇒ smoother boundary; large
γ ⇒ wiggly boundary.

Kernel: linear (fast, interpretable), RBF (default, flexible), poly/sigmoid (situational).
Always scale features before non-linear kernels.

Cross-Validation (CV): reliable model selection on the training set; stabilizes choices
but may not change test accuracy.

GridSearchCV (best practice) Pipeline([(’scaler’, StandardScaler()), (’svm’, SVC())])

param grid = { ’svm kernel’: [’linear’,’rbf’], ’svm C’: [0.1,1,10,100], ’svm gamma’:

[’scale’,1e-3,1e-4] }
GridSearchCV(pipe, param grid, cv=5, scoring=’accuracy’, n jobs=-1) Reading results:

inspect best params , best score , and cv results (mean ± std across folds).

Overview

K-Nearest Neighbors (KNN): A non-parametric, instance-based supervised learning
algorithm.

Tree-Based Methods: Include Decision Trees, Random Forests, Bagging, and Boosting.

All are supervised learning algorithms, capable of handling both classification and
regression tasks.

Focus: interpretability, flexibility, and adaptability to nonlinear data.

K-Nearest Neighbors (KNN): Concept

Classifies a new point based on the majority
label of its k-nearest neighbors.

Distance metrics: Euclidean, Manhattan, or
Minkowski.

Small k: Overfitting, sensitive to noise.
Large k: Oversmoothing, underfitting.

Lazy learner — no model training, computes
during prediction.

Works only with numerical or
distance-computable features.

Tree-Based Methods: Overview

Decision Trees, Random Forests, Bagging, Gradient Boosting

Used for both classification and regression.

Handle categorical and numerical data.

Advantages:

Highly interpretable (tree-graph structure).
Nonlinear decision boundaries.
Can work without feature scaling.

Disadvantages:

High variance (overfitting) if tree depth is not controlled.
Sensitive to small perturbations in data.

Decision Tree: Concept

Builds a model in a tree-like structure of
decisions and outcomes.

Splits data recursively using variables that best
reduce Gini impurity or entropy.

Internal nodes: decision based on a feature.
Branches: outcome of test.
Leaves: predicted label/value.

Works well for small-to-medium datasets.

Decision Tree for what to do today. https://towardsdatascience.com

Tree Ensembles: Bagging, Random Forest, Boosting

Bagging: Builds multiple trees on bootstrap samples and averages predictions (reduces
variance).

Random Forest: Bagging + random feature selection at each split (decorrelates trees).

Boosting: Sequentially builds trees, each correcting errors of the previous (reduces bias).

Gradient Boosting: Uses gradient descent to minimize loss function across weak
learners.

Supervised Learning Context:

All tree-based models are supervised.

Input: labeled data (X, y).
Output: predictive model.

For unlabeled data, clustering or dimensionality reduction (unsupervised) methods are
used instead.

Comparison: KNN vs Tree-Based Methods

Aspect KNN Tree-Based Methods
Learning type Supervised (instance-based) Supervised (model-based)

Training time None (lazy learner) Requires training (tree construction)

Prediction time Expensive (distance calc.) Fast after training

Interpretability Low High (visual trees)

Feature scaling Required Not required

Data type Numeric only Numeric + Categorical

Overfitting control via k via pruning / ensembles

Summary

KNN: intuitive, simple, but computationally heavy on large datasets.

Decision Trees: interpretable but unstable.

Random Forest / Bagging: reduce variance.

Boosting / Gradient Boosting: reduce bias.

Ensemble learning combines multiple weak learners to achieve robust models.

Decision Tree: one interpretable single-tree model, high variance.

Random Forest: multiple trees trained in parallel; reduces variance.

Gradient Boosting: sequential small trees ((sequential correction); reduces bias by
correcting errors.

Decision Tree/ Random Forest Classifier Parameters

Parameter Description Typical Impact
max depth=10 Limits how deep the tree can grow (how

many levels of decisions).
Prevents overfitting. Larger depth → more
complex model; smaller depth → simpler
model.

criterion=‘gini’ Metric to measure the quality of a split.
Options: ‘gini’ or ‘entropy’.

‘gini’ uses Gini impurity (faster), while
‘entropy’ uses information gain (Shannon
entropy).

random state=42 Sets the seed for random processes (like
choosing feature splits).

Ensures reproducibility – same random seed
⇒ same model each time you run.

n jobs= -1 (only
for random forest)

Number of CPU cores to use for parallel
processing.

−1 uses all cores ⇒ faster training; use
smaller values to limit CPU usage

Gradient Boosting Parameters
Parameter Description Typical Impact / Guidance
n estimators=250 Number of boosting stages (trees). More estimators → lower bias but higher

training time and possible overfitting.
Common range: 100–500.

learning rate=0.1 Shrinkage rate applied to each tree’s
contribution.

Lower rate requires more estimators; bal-
ances model complexity vs. accuracy.
Typical: 0.01–0.2.

max depth=10 Maximum depth of individual regression
trees.

Deeper trees learn more complex relations
but risk overfitting; shallower trees in-
crease bias.

min samples split=4 Minimum number of samples required to
split an internal node.

Higher values→ simpler, more generalized
trees.

min samples leaf=6 Minimum number of samples at a leaf
node.

Prevents very small leaves; helps regular-
ization and reduces overfitting.

max features=0.6 Fraction of features considered for each
split.

Adds randomness, improves generaliza-
tion, speeds up training. Typical: 0.3–1.0.

loss=’log loss’ Loss function optimized during boosting. ’log loss’ = logistic regression loss for
classification; lower loss = better fit. Also,
’exponential’

Loss functions in GradientBoostingRegressor:
‘squared error’ ‘absolute error’ ‘huber’ — a mix between squared and absolute loss (less sensitive to outliers),

‘quantile’

BaggingClassifier Parameters

Parameter Default Value Description
estimator None Base estimator to fit on random subsets. Defaults to a decision

tree (DecisionTreeClassifier()) if None.
n estimators 10 Number of base estimators (bagged models) in the ensemble.
max samples 1.0 Fraction or number of samples to draw from the training set

to train each base estimator. (1.0 = 100% of the data, with
replacement).

max features 1.0 Fraction or number of features to draw for training each base
estimator. (1.0 = all features).

bootstrap True Whether samples are drawn with replacement (bootstrap sam-
pling).

bootstrap features False Whether features are drawn with replacement.
oob score False If True, compute the out-of-bag score using data not seen by

each base estimator.
warm start False If True, reuse the solution of previous calls to .fit() and add

more estimators incrementally.
n jobs None Number of CPU cores to use for parallel training. None = 1 core;

-1 = all cores.
random state None Seed for reproducibility.
verbose 0 Controls the verbosity level during fitting.

Comparison of Tree-based Ensemble Methods
Model Core Idea Training Strategy Bias–Variance

Tradeoff
Typical Features /
Remarks

Decision Tree Single tree parti-
tions data using
impurity measures
(Gini / entropy).

Trained once on all
data; greedy top-
down splitting.

Low bias, high vari-
ance.

Easy to interpret;
prone to overfitting.

Bagging Train multiple mod-
els on bootstrapped
samples and average
results.

Parallel, indepen-
dent models (each
on random sample).

Reduces variance;
bias unchanged.

Stabilizes high-
variance models like
trees. Example:
Random Forest.

Random Forest Bagging + random
feature selection at
each split.

Parallel ensemble of
many decision trees.

Lower variance than
single tree.

Adds feature ran-
domness; robust,
less interpretable.

Boosting Sequentially add
weak learners fo-
cusing on previous
errors.

Each model trained
on weighted data
(misclassified points
emphasized).

Reduces bias; may
increase variance.

AdaBoost is classic
version; uses expo-
nential loss.

Gradient Boosting Boosting via gradi-
ent descent on a loss
function.

Sequential models
fit to residuals (neg-
ative gradients).

Reduces both bias
and error progres-
sively.

More flexible;
supports various
losses (log loss,
squared error);
forms basis of XG-
Boost, LightGBM.

Evolution of Methods (Simple Flow)

Decision Tree ⇒ Bagging ⇒ Random Forest ⇒ Boosting

⇒ Gradient Boosting

Decision Tree: single model; high variance.

Bagging: variance reduction via bootstrap + averaging.

Random Forest: bagging + random features (decorrelates trees).

Boosting: sequential weak learners correct errors (bias ↓).

Gradient Boosting: boosting via gradient descent on a loss.

Base Estimator → Ensemble Classifier (Simple Flow)

Base Estimator
(e.g., DecisionTreeClassifier(max depth=1))

⇓ ⇓ ⇓ · · · (many copies / rounds)

Combine Predictions
(vote / average / weighted sum)

⇓

Ensemble Classifier
(e.g., AdaBoostClassifier, BaggingClassifier, RandomForestClassifier)

Idea: The ensemble trains many simple models and combines them into one strong predictor.

